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i. Statement of the Problem. We consider the steady stabilized flow of an incompres- 
sible viscous liquid through a prismatic channel with a rectangular cross section, rotating 
with a constant angular velocity ~ about an axis through the center of a cross section of 
the channel perpendicular to one of its sides. 

We introduce a Cartesian coordinate system 0 x'y'z' rigidly attached to the channel 
with the Oy' axis along the axis of rotation and the Oz' axis along the axis of the channel 
in the direction of flow. The linear dimension of the cross section of the channel is 2h 
in the direction of the y' axis and 21 in the direction of the x' axis. We assume that the 
liquid flows in the channel under the action of a constant longitudinal modified pressure 
gradient 8K/Sz'= a at a Rossby number Ro = U/~L <<i. 

Under the above assumptions the motion of the liquid in the channel is described by 
the following system of differential equations [i]: 

AA~ = BOw/@,  h w  = - - R O r  ( 1 . 1 )  

where 

H 

h = 02/Ox ~ + O"-/Oy~; x = x ' /L ;  y = y"/L; 
t !  . 91 $ = ~p'/UL; w = w tU,  R = 2o)L-!v; 

p ~02 / l  for h > ~ l ,  
p 2 (x'z + z'~'); L = [ h for h ~ l; 

U =--~L2/2~ is the characteristic velocity, w', z' component of the relative velocity vector~ 
~*, stream function of the transverse flowl p, pressure, 0, density, and v, kinematic vis- 
cosity of the liquid. 

The boundary conditions for system (i.i) have the form 

or Oq~/Og = 0 at x =  • l /L;  g = ~ h l L .  ( 1 . 2 )  
W : ~ - -  a x  - -  

2. A Channel Extending in the Direction of the Axis of Rotation (h ~ l). The solu- 
tion of system (I.i) which satisfies the boundary conditions 

w ( + l ,  y) = 0, w ( x , •  t / e ) =  0, ~p(__+_l, y) = 0, 

~y (x, 4- l /e)  = 0, can be written in the form 

= Ah [" ~ r l ch (b2x )cos (bax  ) q- r~sh (b2x ) . s in (b3x  ) X 
h = o  

• sin + (9___) + r .  sh (boy).r ( oy) - -  
h = o  [. b a c h  c a 

- - r 4 e h ( b s y ) . s i n ( b ~ y  ) .cos(~hx) + 4  ~ [ r ~ s h ( b s y ) . e o s ( b 6 y  ) - -  
h=o  

- -  r~ ch (b~y). sin (bay)] cos (a~x); 

(2.1) 
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co 

w---- t - - x  ~ + 4 ~  ~ ( -  ~)~+~ = a - - - ~ -  [r~ ch (b~g). cos (b~y) -- r s sh (b~y). sin (b,g)] • 

�9 [ ch ( b ~ )  
•162 ~ A,~ F-R-V~ L ~ - - r ,  ch(b.,x).cos(bax)-- 

h = o  

] ' [ c h  (bay )  ch(bay).cos(b6y)_rl, sh(bsg).sin(b~y)]cos(o:hx), - - r~osh  (b~x).sin(b~x) c o s ( ~ y )  -t- , ~  RBh [ ~--~  rn  
h = o  

(2.2) 

where 

= = y (2k  + 1) ~; ~z~ y 

{ I for h ~ > l  {l/h for h ~ l ,  
ex= h/l for h~< l ;  e =  1 for h ~ I ;  

b,,a= ~ - V R - ~  V 2 V l - - t h + t ~ •  b ,=  V a ~  + v : - v~ ;  

b~,o=y 1/(2~+~-v~)~+3(~+~/~ +(2~.+v~-~); 

Vi,z = 4 '-~ 2-7" • --"-'2---' 

r 2 = F ( ~ F 3  ch b~.cos bz - -  sh b2.sin b,); 

r, = p c ,  (b~ Ch ~ .  ~o~ ~ - -  b0 ~h ~ .  ~ n  ~0) + g ~  [ ~  (b~ + b~ - -  
2 

- =~) ~ ~ . r  + ~0 (~ + ~0 ~- =~),~ ~ . ~  ~0]; 
r~ = pF~(b, eh c, .cos c~ + b~ sh c~.sin c~); 

r~ = pFx(b~ ch c~ cos c~ - -  b~ sh c~.sin c~); 

r7 = F~(0 ch %.cos ca + sh c~-sin c~); 

rs = F~(0 eh c~.cos c~ - -  sh c~. sin c~); 

r~ = F(ch b~.cos b~ - -  V'3"sh bo-sin bz); 

r~0 = F(F~3 ch b=.cos bz + sh b~.sin bz); 

r n = F~(ch c~.cos c~ .+ 0~ sh c~.sin c~); 

rx= = F~(sh c~.sin c~ - -  0~ ch c~.cos c~); 

(2.3) 

p = 

F - -  1 ; F~- -  1 . 
a h  2 b 2 - -  s i n  2 b 3 c h  2 b 5 - -  s i n  2 b 6 ' 

ci = bi/e ( i =  4, 5, 6); 

__ , - -  f~ h.  01__ 5 1% 
2bsb 6 265b 6 

- -  465b6. a~ - -  b~ 

The coefficients A k and B k in (2.1) and 
boundary conditions for the stream function 4. 
tions 

(2.2) must be determined from the remaining 
If A k and B k are determined from the condi- 
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( § ' -r x, *_ = 0, % = (4- 1, y) = 0, ( 2 . 4 )  

it is easy to show ~at all ~e boundary conditions of ~e problem will be satisfied. Be- 
cause of the sy~etry of conditions (1.2) and the fact that w and ~ are even functions, it 
is sufficient to satisfy Eqs. (2.4) only ~r y = I/E and x = i, respectively~ From the 
first of Eqs. (2.4) it follows ~at 

2 (  4 ~ - - t ' ~ - '  t)~+~A~H~ B ~ Q ~ + ~ r ~ l c o s ( a ~ x ) ,  (2 .5)  ~ ( -  (x)= ~,~ / 
h=O h=O 

where 

,x~ - -  b~ 

Qk = r3 sh c~. cos % -- r, ch c~. sin ce, + ~ th ca; 

T~, = rash c~. cos cs --  % ch %. s~n %; 

ch (b,x) q c h  (b~x). cos (bax) + r~ sh (bo_x) sin (bax). H~ = ~ - -  

We expand the function Hk(X) in a cosine series 

oo 

It~ (x) = ~ ,  -%h cos  (e ix )  (k = O, 1, 2 . . .), 
{ = 0  

o~ = 2 ( 2 i - i -  l)el,  Ixl~<l, 

We substitute the expansion found for Hk(x) into the left-hand side of (2.5) and inter- 
change the order of summations, replacing subscripts k by j and i by k. In addition, by 
equating coefficients of identical cosine terms we obtain the following infinite system of 
linear equations: 

co 

Bh 4,_,-?,+ ! r,~ %~(--') ~,4~-~j, , . ~ = 0 , 1 , 2  .), (2.6) 
~,R (,~,~ ~ "" 

�9 j = 0  

where 

Using the second of Eqs. (2.4), we have 

A;~F~ sin ([~IdO "= (-- i) ~ a~Bff!)~_ (y) 1- W "~ 77 ' 
h = 9  h:=0 h :  0 ~k .  

Fh = blth bl + (r2b3 - -  ribs) sh b2.cos b3 + (ro, b2 + raba) ch b~.sin be; 

Z~(g) = r5 sh(bag).cos(beg) -- re ch(bsg)-sin(b6g); 

2 b~ sh (bd) ~- r3 sh (bsg)" cos (b6g) - -  ra ch (bsg). sin (b6g). (Z h - -  

~ h ( Y ) =  b4 oh% 

We expand the functions Zk(y) and Ck(Y) in sine series 

(2.7) 

Zh(y)  = ~ ~ihsin(~iY), ~ k ( Y) =  ~ r 
i = o  i=O 

g~ = -~-~ (2~ + i)8, Iv l  <~7t (k = 0,1,2 . . . ) ,  
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"6 - -  ~ h ]  - r -  ~o5o6J 
" ~ i ' - - - - -  ( i o 2 ) 2  , z ~ 2 L 2  ' b -i- b~. + I~ ~-  ~oso6 

2 ~"  , o  2 2 ~ 2 2 2 2 2 1 ,f~ _9~ ( _  ~)~: [ ~,~-''s ( ' ; -  ~'~- ~ )  ~- 4~,~'0- ( ~  + ~) ( ~  - @ 

We substitute the expansions for Zk(y ) and r into the right-hand side of Eqs. 
(2.7) and interchange the order of summations, replacing subscripts k by j and i by k. 

In addition, by equating coefficients of identical sine terms we obtain the infinite 
system of linear equations 

A k = 2 ( _ _ l ) J a i q ) ~ j B i  4 2~r~; ( h = 0 , 1 , 2  .). ( 2 . 8 )  
j:o ~ +  ~ i~ " j=0 3 

The c o e f f i c i e n t s  A k and B k must be d e t e r m i n e d  f rom (2 .6 )  and ( 2 . 8 ) .  I t  can be shown 
t h a t  f o r  s p e c i f i c  v a l u e s  o f  t he  p a r a m e t e r s  R and e t h i s  s y s t e m  has  a u n i q u e  bounded s o l u t i o n  
which can be f o u n d ,  f o r  example ,  by  the  method o f  s u c c e s s i v e  a p p r o x i m a t i o n s .  I f  t h i s  i s  
done ,  t he  p rob lem posed  i s  c o m p l e t e l y  s o l v e d .  

The a v e r a g e  v e l o c i t y  o f  t h e  l i q u i d  a l o n g  t h e  c h a n n e l  i s  g i v e n  by t h e  r e l a t i o n  

h 1 . 

W o  1 2 i 
U hl ,1~ , w (x' ,  y') dx 'dy ' .  

0 12, 

(2,9) 

Substituting into this the value of w from (2.1), we obtain 

,) 

/ (~, n )  = 2~ ~ e .  (7,. ~ %,)~1, (2.~1 I- (b,~ - o~,) ~ (2c~) o 5 _ _  

, 2 

" [ t i , ~ , , ,  -.  ] 

] (i ' 
- 2.e '~~ ( -  J~ .`% L, ( '~ ~- "~'~) '~' (~~) -~- ;~,; - -  0,,%) ~i= (~:,,) 

. c_z,:. [. );]-- - -  F1 2 (r',] -1 b l )  " 
t,'.: 0 

(2.10) 

(2.11) 

The resistance coefficient for the flow of liquid through the rotating channel is 

~,o -- 4uL 
(w0) 2 �9 (2,12) 

Substituting into this the values of ~ and w~, we have 

~'o i6 2wol = ,: Re -- 

The r e s i s t a n c e  c o e f f i c i e n t  o f  a s t a t i o n a r y  c h a n n e l  ~o i s  a s p e c i a l  c a s e  o f  (2 .13 )  f o r  
R = 0. Tak ing  t h i s  i n t o  a c c o u n t ,  t he  r a t i o  o f  t h e  r e s i s t a n c e  c o e f f i c i e n t s  o f  r o t a t i n g  and 
s t a t i o n a r y  c h a n n e l s  i s  

2 
~o Y -- I (~,0) 
~o 2 (2,14) y - / (~, R) 
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The expression for f (e, 0) is obtained from (2.11) by going to the limit R § 0: 

If $ goes to zero in (2.14), I~/Io § i, i.e., the resistance of a rapidly rotating 
slot channel extending along the axis of rotation is close to the resistance of a stationary 
channel, 

3. A Channel Extending in a Direction Perpendicula r to the Axis of Rotation (Z~h). 

Using the familiar expansion 

~=~02~+ i cos ny fo, { y { = l  

system (i.i) can be written in t h e  form 

Aw ---- --  R O~ 0y 

0m 
AAr = R ~-,~ 

8 ~ ( . i ?  .^. h~ + l 

(3.1) 

(3.2) 

Calculations similar to those in Sec. 2 give the following solution of system (3.2) 
which satisfies the boundary conditions (1.2) : 

2R ~ ( - ! ) k  [s a ch(b~z).cos(b~x) -k s~sh(b2x)'sin(b~x)--i'] X (3 .3 )  

X sin ([~hY) q- ~ ~- ~-R a=o R~ + [~'a [s~ ch (b~x). cos (b3x) --  

] ~ [ -- ~k sh(b4Y) 
q- so sh (b~x).sin (b3x) sin ([~kY) q- Ek ~Z~ k=o b 4 ch b a -~ 

+ S~ sh (bsy)" cos (beY) --  ss ch (bay)" sin (b.y)] cos (~,~x); 

[ ch (blx) 
w = -  ~-R'~kDh[ -ch~ sgch(b~x)c~ (3 .4 )  

h ~ o  

n,/~ ~ ( -  tl ~ 
- -  slosh (b2x)- sin (bax) cos ([~aY) + 8 l']f~ k~=o (lla + [}~) {~/s • 

• [ sn ch (b2x). cos (bax) --  sl~ sh (b2x). sin (bax)] cos (~hY) q- 

-1- 4 ~ ( -  l)kl~k [i a2+ ~ q_ slach(b2x).cos(bax ) _ sl4sh(b~x).sin (b3x)] cos (~kY) q- 

q- R Ea L -cK~ --  s~ch  (bay).cos(bsy) --  s~ash (b~y).sin (b~Y) cos(aay), 

where 

( ) sl = F2 chc~.cosc3 q- ~-:~ shc2.s inc  3 ; 
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1 
s.,, = Fg. ( sh  c2. s in  ca - -  ~7~ ch  %" cos ca); 

s 3 = F a s h c ~ . s i n c ~ ;  st  = F a c h c 2 . c o s c 3 ;  

~ = ~ ,  (oh c~.cos ca + V g s h  c~.sin ca); 

s~ = F~ ( I / '3  ehc~ . cos  ca - -  sh  c~ ' s in  %); 
2 2 s; -= p F  a (b~ eh b~.cos bs q- bash b~.sin b~) -}- gF~ [b~ (b~ -17 b~ --  r X 

o ,  o b~]; • sh b~.sin b~ --  b~ (b~ -F b~ ~- a~) ch b~. cos 

~a = ~Fa ( ~ ~h b~. co~ bo - -  ~o ~h b~. ~n bo) + gFo. [ ~ ( b~ + ~] - -  ~ )  • 

xoh ~ . ~ o s  bo + ~~ ( ~  + b ~  + ~ )  s~ ~ . , ~  ~0]; 

s~ --- F~(ch c~,.cos ca-- "i/3"sh c~.sin ca); 

S~o = F~('I,/3 ch c.,.cos Ca @ sh c~.sin ca); 
s t t =  F~ sh c 2.sin ca; Srz = F2 ch c 2.cos ca; 

= 4 
. I 1 

sta = Fa(ch ba.cos be q- 0~ sh b~.sin b~); 
str ----- Fa(sh b~-sin b~ --  0t eh b~.cos b~); 

F o - - =  t . F a  = t 
" c h  2 c 2 - -  s i n  e c a "  c h  z b~ - -  s i n  a b~ ; 

c~ = b/e~( i  = 1, 2, 3). 

In Eqs. (3.3) and (3.4) the coefficients D k and E k are roots of the 
system of linear equations: 

oo 

~/3 

D~--  -q~A-l~ [t3~H~ t-~5 \~-I  ~Ta~,j § ~=o(- - t /a iP~E~ '  

where 

Nh -- a~ -- b~ b ~  th b~ + s7 sh bs. cos bs --  ss ch bs.sin b6; 

= F ~  _ b 3 b3 ) sh(2cs)]; H I ~ - 2 - [ @ 2  ~-~) sll (2%) --  ( ~  + 

F 2 
H~h = --  -~- [b2 sin (2ca) ~ b~ sh (2c2)]; 

F 2 H ~  = b~ th c, + T [ ( b .  V:3 + ba) sin (2Cs) + (~/3 b~ --  bz) sh (2c~); 

= - ~ -  ~ -- ~ o j -  ( % - % )  (~, j+~ phi 2( - -1)  k j--bT,~q_ _ ; 
-;-  6 ~ ' -  h !  --4b~jI5~ 

[ ) ] 
2 2 2 -- 

t b2, i - -  b3j  -~- o~ h -~- 2 1/-3 b2jbsJl. 
h ~ j = 2 ~ ( - - l )  ~a~ ~ + ~  t ~ - -  ~ - -  ~ ~ - ~ 3  

'qhj ~ 4 8 1  ( - - -  1 )  h ~zhb~iba] 
(~,~ + ~ + ,~)~ - ~ �9 

following infinite 

(3.5) 

(3.6) 
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In (3.6) the extra subscript j on b i indicates that k must be replaced by j in the 
corresponding formulas (2.3) for b i. 

Let us calculate the average velocity of the liquid along the channel. Substituting 
the value of w from (3.4) into (2.9), we have 

----4 ~0 i I -- e,F 3 • WO = f l  ( E l '  R) =_ l:l'it - l-  

[(b~ + bJV~)  ~n (2b~) + ( b~ -- b~/V~) ~ (~b~)]/+ 
X 2 (b~ + b. ~) I 

4R,/3 ~ Fa (b 8 sh (~S) --  b. sin (2bs)) 
+ V--T ~ (R ~ + ~i) ~/~ b~ + b~ + 

oo 

k=; ~ ( 4 2 (b  l-~b~) 
~ Dk (__ i ) =  k [ t hc  I (ha- }- V3b,)sin (25s) -{- (b, -- "V3 bs) sh (2b,) / 

_ y p , ~  ..., - ~  , ~ : -  - F .  2 (b~ + b~) !" 
h=0. t~k L * 

(3.7) 

Equations (3.3), (3.7), and (3.4),as Z § = (e, § 0) go over into corresponding expressions 
for the longitudinal component of velocity and the stream function of secondary flow in a 
rotating slot channel extending in a direction perpendicular to the axis of rotation [2] ; 
for R = 0 these equations give the velocity distribution in a stationary channel. 

Using (1.2), (2.12), and (3.7), we obtain the following expression for the ratio of 
the friction coefficients of rotating and stationary channels: 

Z,, 11 (~,, o) 
~ = ~ ) .  

The expression for f, (r 0) is obtained from (3.7) by going to the limit R § 0 

2 
f i  (%, O) = T - ! (~ ,  0). 

Equations (2.6), (2.8), and (3.3) were solved by the iteration method for various values of 
the parameter R and I/h of practical interest. We note that boundary-value problem (i.i) 
and (1.2) can be solved directly on existing computers only for relatively small values of R 
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[3]. The values found for the coefficients Ak, B k, Dk, and E k were used to calculate the 
velocity distribution and the resistance coefficient of the rotating channel. Figure 1 
shows the calculated values of the resistance coefficient of the channel %m/%o as a function 
of the parameter /R/2 for various values of I/h. For fixed R the resistance coefficient of 
the channel increases with an increase in its extension in a direction perpendicular to the 
axis of rotation. For fixed Z/h and small values of R the ratio %m/%0 is proportional to R; 
for R > 300 the dependence of %m/%o on /R/2 is practically linear. This shows that for large 
R the main contribution to the channel resistance comes from the Ekman layer formed on the 
channel walls perpendicular to the axis of rotation. 

The lack of experimental data prevents a direct comparison of our calculated results 
with experiment. A comparison of the theoretical values of the resistance coefficient with 
the corresponding values of %e obtained by extrapolating the experimental law %m = %m (Ro) 
for R = const in the range of small Rossby numbers shows good agreement for a channel with a 
square cross section for all values of R. 
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MOTION OF A PLANE PLATE OF FINITE WIDTH IN A VISCOUS CONDUCTIVE 

LIQUID, PRODUCED BY ELECTROMAGNETIC FORCES 

V. I. Khonichev and V. I. Yakovlev UDC 538.4 

Studies are available [1-4] which demonstrate the possibility, in principle, of cre- 
ating magnetohydrodynamic engines for marine vessels. They have demonstrated that due to 
the low conductivity of seawater and the limited value of the magnetic fields employed, the 
efficiency of such engines will be low. However, recent successes in development of super- 
conductive materials permit the hope of increased field intensities in such magnetic systems, 
and consequently, increased efficiencies in such MHD engines. It is thus of interest to 
study the peculiarities of flow around bodies in the vicinity of which volume electromag- 
netic forces produced by a source within the body flowed over exist. 

I. The present study is dedicated to examination of the motion of the simplest model 
of a body (a plate of finite width) in a viscous conductive liquid. Numerical solution of the 
Navier--Stokes equation together with the equation of motion of the solid will determine the 
velocity of the plate's translational motion relative to the liquid which is at rest at in- 
finity, and also the pattern of flow around the plate; the plate is set in motion by a mag- 
netic field in the form of a traveling wave created by surface currents distributed over the 
plate width. The presence of turbulent volume forces in the liquid near the plate set in 
motion in this electromagnetic fashion makes the flow pattern different from the classical 
one. 

Becuase of the numerical method used to solve the Navier--Stokes equation the flow under 
study must be limited to Reynolds number values on the order of magnitude of 10 s. 

Thus, we will consider a plane plate of width 2~ along the x axis, infinite in extent 
along the z axis, and located in an infinite viscous conductive liquid. Along the z axis a 
surface current 
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